Searches For Higgs at CDF

Christopher Neu
Ohio State University

On behalf of *The CDF Collaboration*

SUSY03 June 7, 2003

Outline: •Introduction and Motivation

•SM Higgs Production and Decay

•Run 1 Results

•MSSM Higgs Searches

•Summary

Introduction and Motivation

Higgs searches are an important part of the Tevatron physics program.

Why?

- •Source of EWSB in the SM:
 - ➤ Consequence: **imposition of mass** to elementary particles.
- • M_H : critical to the determination of L:
 - \triangleright L = energy scale at which the SM breaks down:
 - Could the SM be effective up to the Planck scale (10¹⁹ GeV) or does it break down at lower energies?
- •Tevatron: currently **only active facility** capable of probing the Higgs sector.

Present Limits on
$$M_H$$
: $M_H > 114.4 \frac{GeV}{c^2}$

$$M_H < 170 \frac{GeV}{c^2}$$

Excluded by LEP at 95% CL

From global SM fit at 95% CL $\,$

SM Higgs Production at the Tevatron

Higgs production and decay:

- •Dominant production mode, $gg \mathbb{R} H$: > enormous backgrounds
- •Main targets: WH and ZH production
- •Main decay modes:

 $\rightarrow H \otimes bb$ for $M_H < 130$

 $\rightarrow H \otimes WW \text{ for } M_H > 130$

•Need luminosity...

Run I VH Limits

CDF performed several SM Higgs searches in Run 1:

•Four channels:

- •WH® lvbb
- •ZH ® llbb
- •ZH ® vvbb
- •W/ZH ® qqbb
- •ZH ® vvbb achieved best single-channel limit

•Combined limit:

- •Measured for $s(VH)*BR(H\rightarrow bb)$, V=W or Z
- •Binned likelihood, L, in M_{jj}
- •Minimized -ln(L) wrt s(VH)*BR
- •Result: s(VH)*BR < 8pb at 95% CL limit for $M_H < 130 \; GeV$
- •Limit is ~50 times larger than theory prediction

Higgs Prospects for Run II

Tevatron Higgs Working Group

•Evaluated Run 2 Higgs search potential

•Caveats:

- ➤ Approximate detector simulation
- ≥10% dijet mass resolution
- ≥60% per-jet tag efficiency
- ➤ 100% trigger efficiency
- > Estimated background levels
- •For WH, ZH modes, performed three studies:
 - •CDF Run 1 simulation
 - •SHW simulation (~Run 2)
 - •SHW simulation + Neural Network
- •Advocated employment of neural network

MH=120, in lybb final state, Lum = $1fb^{-1}$:

Rate	CDF	SHW	Neural Net
S	3.7	4	4.4
В	49	58	26
S/sqrt(B)	0.5	0.5	0.9

hep-ph/0010338

WH Search Using a Neural Network

Primary question:

•Can we **demonstrate improved sensitivity** using a NN in the CDF Run 1 framework?

Further, we can also ask:

- •Can we **optimize the strategy** using the Run 1 data with an eye to Run 2?
- •Can this technique **reduce the Run 1** *WH* **cross section upper limit**?

Prior-to-NN:

Backgrounds:

Source	Nexp	
ttbar	5.4	
Single top	2.5	
Diboson	2.7	
W+QCD	22.7	
Total	33.3	

K	
For M_H =120 baseline sensitivity:	

30

	Signal:	
	MH Scenario	Nexp
	WH, MH=100	0.32
	WH, MH=110	0.24
-	WH, MH=120	0.19
	WH, MH=130	0.12
	WH, MH=140	0.07
	WH, MH=150	0.03

Strategy: •Apply a baseline event selection

- •Advanced selection:
 - Design a NN with high background rejection
 - \triangleright Exploit M_{ii} in counting experiment
- •Optimize using *a priori* limit as figure of merit
- •Investigate sensitivity gain

WH Search Using a Neural Network

•Baseline event selection: high p_T lepton, MET, 2 jets, ≥ 1 b-tag

•14 types of background: sorted into 4 classes \Rightarrow 4+1(signal) = 5 input classes.

Class1	Class2	<u>Class3</u>	<u>Class4</u>	<u>Class5</u>
WH	tt	Wbb, Wcc,	W*, W-gluon	WZ,WW,ZZ,
		Wc, W+mistags, Non-W	,	$Zbb,Zcc,Z{ ightarrow} au au$

- •Five input classes \Rightarrow 5 NN output nodes
- •Eight inputs:

•MET•
$$(E_T^{j1} - E_T^{j2})$$
• SE_T^{Extra} • H_T • $M_{j1j20bj3}$ • M_{lvj1j2} •Vector $p_T(\mathbf{j_1j_2})$ • M_{lvj1}

 \triangleright Avoid using variables that sculpt M_{i1i2} !

WH Search Using a Neural Network: Results From Data

- •The CDF Run 1 W+2jet sample: 42 events
- •Data events run through our NN:

WH Search Using a Neural Network: Data Results

Event yields after complete advanced selection:

CDF Run	I Preliminary
CDI Null	L I I CHIMINAL Y

	Signal		Data	
MH	(Theory)	Total	Observed	Probability
100	0.25+/-0.05	12.6+/-2.6	19	0.0899
110	0.20+/-0.04	12.0+/-2.4	22	0.0183
120	0.15+/-0.03	10.6+/-2.1	21	0.0092
130	0.09+/-0.02	9.2+/-1.8	17	0.0255
140	0.04+/-0.01	7.2+/-1.4	15	0.0141
150	0.02+/-0.005	6.1+/-1.2	12	0.0306

Estimated systematics

Conclusions:

- •Post-advanced selection sensitivity: 1/22 for M_H =120 (34% improvemnt)
- •We see a **2-3**s **excess** for each counting experiment
- •This excess is known from other lepton+jets analyses

WH Search Using a Neural Network: Data Results

CDF Run I Preliminary

			Backgrounds					
	Signal		Wbb,Wcc,Wc		Diboson,		Data	
MH	(Theory)	ttbar	W+mistags, nonW	Single Top	Z+X	Total	Observed	Probability
100	0.25+/-0.05	1.4+/-0.4	8.8+/-2.5	0.9 + / - 0.2	1.5+/-0.4	12.6+/-2.6	19	0.0899
110	0.20+/-0.04	1.4+/-0.4	8.3+/-2.3	0.9 + / - 0.2	1.4+/-0.4	12.0+/-2.4	22	0.0183
120	0.15+/-0.03	1.3+/-0.4	7.2+/-2.0	0.9 + / - 0.2	1.2+/-0.3	10.6+/-2.1	21	0.0092
130	0.09+/-0.02	1.3+/-0.4	6.1+/-1.7	0.9 + / - 0.2	0.9+/0.2	9.2+/-1.8	17	0.0255
140	0.04+/-0.01	1.2+/-0.4	4.6+/-1.3	0.8 + / - 0.2	0.6+/-0.2	7.2+/-1.4	15	0.0141
150	0.02+/-0.005	1.0+/-0.3	3.9+/-1.1	0.7 + / -0.2	0.4+/-0.1	6.1+/-1.2	12	0.0306

Estimated systematics

WH Search Using a Neural Network: Data Results

CDF Run I Preliminary

	A prio	ri Limit	Data Results	
MH	No Systematics	Estimated Systematics	Sigma(WH)	Sigma(VH)*BR(H->bb)
100	9.5	11.3	17.8	22.5
110	8.4	9.9	19.9	24.1
120	8.4	10.0	21.8	23.4
130	9.3	10.9	21.4	18.0
140	13.5	15.6	33.3	18.5
150	24.3	28.5	55.2	17.9

Note that the a priori limit from the previous Run 1 *lvbb* analysis was $\sim 13pb$ for $M_H=120$.

The improvement in a priori limit is the equivalent of having an extra 60 pb⁻¹ of Run 1 data, an effective increase of 57% from technique alone.

Caveats:

- •This is not a fair comparison: No M_{ii} window exploited in previous Run 1 analysis.
- •Estimated systematics for NN analysis.
- •A NN in other analyses (ex: double-tag analysis, N_{jets} =3 or 4, etc.) may have **different sensitivity** increase.
- •More fair comparison: rectangular cuts analysis in same 8 variables with M_{jj} window

Results: Interpretation for VH Production Limit

Minimal Supersymmetric Extension to the Standard Model (MSSM):

•Two Higgs doublets

•Five physical Higgs particles:

➤Two neutral CP-even: *h*,*H*

➤ One neutral CP-odd: *A*

Two charged: H^+ , H^-

•Masses for all five described in terms of two free parameters: $tan(\beta)$ and M_A

•Couplings are given by relations involving beta and alpha, the angle from the diagonalization of the h-H mass matrix

June 7, 2003 SUSY03 Christopher Neu OSU-CDF Page 13

- •The ff_df_d coupling is **proportional to tanb** (f=h/H/A)
- •If $\tan\beta$ is large, the production cross section for the process $\mathbf{gg,qq} \otimes f$ **bb** is therefore **large as well.**
- •Run 1 search looked for this channel
 - >Exploited decay A ® bb
 - ➤ Looked for fairly clean bbbb final state.
- •Event Selection:
 - ➤ Four high ET jets
 - ≥3 or more b tags
 - ➤ Require tagged jets be well-separated
 - $\triangleright M_f$ dependent cuts
- •Scanned M_f plane

- •Large exclusion range outside of LEP results
- •Exclusion of $\tan \beta > 50$ for $M_A = 100$
- •Opportunity to cover more of the phase space in Run 2
- •Search is underway

- •tan β enhancement also increases gg \rightarrow A/H/h
- •Look for decay to taus instead of b's

➤ Potentially much cleaner

t decay properties:

- •t \mathbb{R} e?_e?_t, t \mathbb{R} μ ?_{μ}?_t: leptonic decays (~ 36%).
- •t \mathbb{R} p?_t, t \mathbb{R} pp⁰?_t, t \mathbb{R} ppp?_t: hadronic decays (~ 64%).
- •Always accompanied by missing energy due to neutrinos in final state.

Identifying hadronic taus:

- •Collimated, isolated jet
- •Low track multiplicity
- •Low π^0 multiplicity

- •High pT electron sample
- Look for
 - •one tau decay to electron
 - •one hadronic tau decay
- •Require non-negative reconstructed tau mass for non-BTB candidates
- •Perform counting experiment

Run 1 analysis is nearing completion. Run 2 analysis is off and running.

Exotic Higgs in Run II

Doubly-charged Higgs:

- •Predicted by L-R symmetric models
- •SUSY LR models predict low-mass H++
- $H^{++} \rightarrow l^+l^+$
- •Search performed in CDF Run2 same-sign dielectron, dimuon data

Total Background

- •Backgrounds: Z production, QCD, W+jets cosmics(dimuon only)
- •Signal Acceptance: Pythia MC and CDF 2 detector simulation
- •Clean signal = high acceptance

Exotic Higgs in Run II

Dielectron Result:

- •Observe 0 events
- •Establish 95% CL limit
- •No exclusion

Dimuon Result:

- •Observe 2 events, expect ~3 from bkgd
- •Establish 95% CL limit
- •Restricts $M_{H++} > 110$ (LEP: $M_{H++} > 100$)

Summary

- •The Higgs search is an important component of Run 2 CDF physics
- •SM Higgs searches were performed in Run 1
- •Gains from employment of a NN in advanced selection have been verified
- •MSSM Higgs searches are underway that look for channels that enjoy $tan\beta$ enhancement
- •Other exotic Higgs searches have been undertaken.
- •There is much to be done!